PUBLICATIONS

2022

  • Nguyen, T. L., Bross, D. H., Ruscic, B., Ellison, G. B., Stanton, J. F., Mechanism, thermochemistry, and kinetics of the reversible reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5, Faraday Discuss. 2022, Advance Article, https://doi.org/10.1039/D1FD00124H

  • Wehinger, G. D., Kreitz, B., Goldsmith, C. F., Non-Idealities in Lab-Scale Kinetic Testing: A Theoretical Study of a Modular Temkin Reactor, Catalysts 2022, 12, 349, https://doi.org/10.3390/catal12030349

  • Kreitz, B., Lott, P., Bae, J., Blöndal, K., Angeli, S., Ulissi, Z. W., Studt, F., Goldsmith, C. F., Deutschmann, O., Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation, ACS Catal. 2022, 12, 18, 11137–11151, https://doi.org/10.1021/acscatal.2c03378

  • Kreitz, B., Wehinger, G. D., Goldsmith, F. F., Turek, T, Microkinetic Modeling of the Transient CO2 Methanation with DFT-Based Uncertainties in a Berty Reactor, ChemCatChem 2022, e202200570, https://doi.org/10.1002/cctc.202200570

  • Becerra, A.; Diaz-Ibarra, O. H.; Kim, K.; Debusschere, B.; Walker, E. A., How a quantum computer could accurately solve a hydrogen-air combustion model, Digital Discovery Advance Article. https://pubs.rsc.org/en/content/articlelanding/2022/DD/D2DD00049K

2021

      • Bylaska, E. J.; Song, D.; Ilton, E. S.; O’Leary, S.; Torralba-Sánchez, T. L.; Tratnyek, P. G., Chapter Five - Building Toward the Future in Chemical and Materials Simulation with Accessible and Intelligently Designed Web Applications. In Annual reports in computational chemistry, Dixon, D. A., Ed. Elsevier: 2021; Vol. 17, pp 163-208. https://doi.org/10.1016/bs.arcc.2021.09.003

      • Diaz-Ibarra, O. H.; K, Kyungjoo; Safta, C.; Zádor, J.; Najm, H. N., Using Computational Singular Perturbation as a Diagnostic Tool in ODE and DAE Systems: A Case Study in Heterogeneous Catalysis, Combust. Theory Model. 2021, 26, 201-227, https://doi.org/10.1080/13647830.2021.2002417

      • Liu, M.; Grinberg Dana, A.; Johnson, M. S.; Goldman, M. J.; Jocher, A.; Payne, A. M.; Grambow, C. A.; Han, K.; Yee, N. W.; Mazeau, E. J.; Blondal, K.; West, R. H.; Goldsmith, C. F.; Green, W. H., Reaction Mechanism Generator v3.0: Advances in Automatic Mechanism Generation. J. Chem. Inf. Model. 2021, 61, 2686-2696. https://doi.org/10.1021/acs.jcim.0c01480

      • Ruscic, B.; Bross, D. H., Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects. Mol. Phys. 2021, e1969046. https://doi.org/10.1080/00268976.2021.1969046

      • Zaleski, D. P.; Sivaramakrishnan, R.; Weller, H. R.; Seifert, N. A.; Bross, D. H.; Ruscic, B.; Moore, K. B.; Elliott, S. N.; Copan, A. V.; Harding, L. B.; Klippenstein, S. J.; Field, R. W.; Prozument, K., Substitution Reactions in the Pyrolysis of Acetone Revealed Through a Modeling, Experiment, Theory Paradigm. J. Am. Chem. Soc. 2021, 143, 3124-3142. https://doi.org/10.1021/jacs.0c11677

      • Mazeau, E. J.; Satpute, P.; Blöndal, K.; Goldsmith, C. F.; West, R. H., Automated mechanism generation using linear scaling relationships and sensitivity analyses applied to catalytic partial oxidation of methane. ACS Catal. 2021, 11, 7114-7125. https://doi.org/10.1021/acscatal.0c04100

      • Blöndal, K.; Sargsyan, K.; Bross, D. H.; Ruscic, B.; Goldsmith, C. F., Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties. J. Phys. Chem. C 2021, 125, 20249-20260. https://doi.org/10.1021/acs.jpcc.1c04009

      • Thorpe, J. H.; Kilburn, J. L.; Feller, D.; Changala, P. B.; Bross, D. H.; Ruscic, B.; Stanton, J. F., Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and its Extensions. J. Chem. Phys. 2021, 155, 184109. https://doi.org/10.1063/5.0069322

      • Kreitz, B.; Sargsyan, K.; Blöndal, K.; Mazeau, E. J.; West, R. H.; Wehinger, G. D.; Turek, T.; Goldsmith, C. F., Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO2 Hydrogenation on Ni(111). JACS Au 2021, 1, 1656-1673., https://doi.org/10.1021/jacsau.1c00276

      • Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zádor, J., Geometry Optimization Speedup through a Geodesic Approach to Internal Coordinates. J. Chem. Phys. 2021, 155, 094105. https://doi.org/10.1063/5.0060146

      • Kreitz, B.; Wehinger, G. D.; Goldsmith, C. F.; Turek, T. Microkinetic Modeling of the CO2 Desorption from Supported Multifaceted Ni Catalysts. J. Phys. Chem. C 2021, 125, 5, 2984–3000. https://doi.org/10.1021/acs.jpcc.0c09985

      • Bylaska, E. J.; Song, D; Bauman, N. P.; Kowalski, K; Claudino, D. Humble, T. S., Quantum Solvers for Plane-Wave Hamiltonians: Abridging Virtual Spaces Through the Optimization of Pairwise Correlations. Front. Chem. 2021, 9, 603019. https://doi.org/10.3389/fchem.2021.603019

2020

  • Bylaska, E. J.; Waters, K.; Hermes, E. D.; Zádor, J.; Rosso, K., A Filon-Like Integration Strategy for Calculating Exact Exchange in Periodic Boundary Conditions: A Plane-Wave DFT Implementation. Mater. Theory 2020, 4, 3. https://doi.org/10.1186/s41313-020-00019-9

2019

  • Hermes, E. D.; Sargsyan, K.; Najm, H. N.; Zádor, J., Accelerated Saddle Point Refinement through Full Exploitation of Partial Hessian Diagonalization. J. Chem. Theory Comp. 2019, 15, 6536-6549. https://doi.org/10.1021/acs.jctc.9b00869

  • Blondal, K.; Jelic, J.; Mazeau, E.; Studt, F.; West, R. H.; Goldsmith, C. F., Computer-Generated Kinetics for Coupled Heterogeneous/Homogeneous Systems: A Case Study in Catalytic Combustion of Methane on Platinum. Ind. Eng. Chem. Res. 2019, 58, 17682-17691. https://doi.org/10.1021/acs.iecr.9b01464

  • Bross, D. H.; Yu, H.-G.; Harding, L. B.; Ruscic, B., Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited. J. Phys. Chem. A 2019, 123, 4212-4231. https://doi.org/10.1021/acs.jpca.9b02295

  • Aprà, E.; Bylaska, E. J.; Jong, W. A. d.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.; Dam, H. J. J. v.; Alexeev, Y.; Anchell, J.; Anisimov, V.; Aquino, F. W.; Atta-Fynn, R.; Autschbach, J.; Bauman, N. P.; Becca, J. C.; Bernholdt, D. E.; Bhaskaran-Nair, K.; Bogatko, S.; Borowski, P.; Boschen, J.; Brabec, J.; Bruner, A.; Cauët, E.; Chen, Y.; Chuev, G. N.; Cramer, C. J.; Daily, J.; Deegan, M. J. O.; Dunning Jr., T. H.; Dupuis, M.; Dyall, K. G.; Fann, G. I.; Fischer, S. A.; Fonari, A.; Früchtl, H.; Gagliardi, L.; Garza, J.; Gawande, N.; Ghosh, S.; Glaesemann, K.; Götz, A. W.; Hammond, J.; Helms, V.; Hermes, E. D.; Hirao, K.; Hirata, S.; Jacquelin, M.; Jensen, L.; Johnson, B. G.; Jónsson, H.; Kendall, R. A.; Klemm, M.; Kobayashi, R.; Konkov, V.; Krishnamoorthy, S.; Krishnan, M.; Lin, Z.; Lins, R. D.; Littlefield, R. J.; Logsdail, A. J.; Lopata, K.; Ma, W.; Marenich, A. V.; Campo, J. M. d.; Mejia-Rodriguez, D.; Moore, J. E.; Mullin, J. M.; Nakajima, T.; Nascimento, D. R.; Nichols, J. A.; Nichols, P. J.; Nieplocha, J.; Otero-de-la-Roza, A.; Palmer, B.; Panyala, A.; Pirojsirikul, T.; Peng, B.; Peverati, R.; Pittner, J.; Pollack, L.; Richard, R. M.; Sadayappan, P.; Schatz, G. C.; Shelton, W. A.; Silverstein, D. W.; Smith, D. M. A.; Soares, T. A.; Song, D.; Swart, M.; Taylor, H. L.; Thomas, G. S.; Tipparaju, V.; Truhlar, D. G.; Tsemekhman, K.; Voorhis, T. V.; Vázquez-Mayagoitia, Á.; Verma, P.; Villa, O.; Vishnu, A.; Vogiatzis, K. D.; Wang, D.; Weare, J. H.; Williamson, M. J.; Windus, T. L.; Woliński, K.; Wong, A. T.; Wu, Q.; Yang, C.; Yu, Q.; Zacharias, M.; Zhang, Z.; Zhao, Y.; Harrison, R. J., NWChem: Past, Present, and Future. J. Chem. Phys. 2020, 152, 184102. https://doi.org/10.1063/5.0004997

  • Welch, B. K.; Dawes, R.; Bross, D. H.; Ruscic, B., An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families. J. Phys. Chem. A 2019, 123, 5673-5682. https://doi.org/10.1021/acs.jpca.9b04381

  • Bross, D. H.; Jasper, A. W.; Ruscic, B.; Wagner, A. F., Toward Accurate High Temperature Anharmonic Partition Functions. Proc. Combust. Inst. 2019, 37, 315-322. https://doi.org/10.1016/j.proci.2018.05.028

  • Ruscic, B.; Bross, D. H., Thermochemistry. In Mathematical Modeling of Complex Reaction Systems: Pyrolysis and Combustion, Faravelli, T.; Manenti, F.; Ranzi, E. M., Eds. Elsevier: New York, NY, 2019; Vol. 45, pp 3-114.

  • Feller, D.; Bross, D. H.; Ruscic, B., Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High- Level Calculations and the Active Thermochemical Tables Approach. J. Phys. Chem. A 2019, 123, 3481-3496. https://doi.org/10.1021/acs.jpca.8b12329

  • Thorpe, J. H.; Lopez, C. A.; Nguyen, T. L.; Baraban, J. H.; Bross, D. H.; Ruscic, B.; Stanton, J. F., High-Accuracy Extrapolated Ab Initio Thermochemistry. IV. A Modified Recipe for Computational Efficiency. J. Chem. Phys. 2019, 150, 224102. https://doi.org/10.1063/1.5095937

2018

  • Nguyen, T. L.; Thorpe, J. H.; Bross, D. H.; Ruscic, B.; Stanton, J. F., Unimolecular Reaction of Methyl Isocyanide to Acetonitrile: A High-Level Theoretical Study. J. Phys. Chem. Lett. 2018, 9, 2532-2538. https://doi.org/10.1021/acs.jpclett.8b01259